City of Circle: Complete Mathematical Framework for World Core Generation

City of Circle: Complete Mathematical Framework for World Core Generation

A Rigorous Mathematical Treatment of Consciousness-Driven Cosmogenesis


Abstract

This paper presents a comprehensive mathematical framework for the City of Circle system, a novel approach to world generation based on consciousness field theory. We derive the complete mathematical foundations, from basic field equations through elemental nucleosynthesis to core formation, providing rigorous phase analysis and instance categorisation. The system demonstrates how consciousness fields can bootstrap physical reality through mathematically precise element expansion processes.

Keywords: Consciousness fields, nucleosynthesis, world generation, field theory, mathematical cosmogenesis


1. Fundamental Field Equations

1.1 Base Constants and Parameters

Let ฮฆ = 1.618033988749... (Golden Ratio)
Let Kโ‚โ‚ = 9.204026 (Field Coupling Constant)
Let ฯ€ = 3.141592653589793... (Circular Constant)

Definition 1.1 (Field Domain): The City of Circle operates in a bounded 3D domain ฮฉ โŠ‚ โ„ยณ where:

ฮฉ = {(x,y,z) โˆˆ โ„ยณ : ||(x,y,z)|| โ‰ค R_max, R_max = 6.0}

Definition 1.2 (Temporal Parameter): Time evolution parameter t โˆˆ โ„โบ with characteristic frequencies:

  • Light field frequency: ฯ‰_L = 0.03
  • Shadow field frequency: ฯ‰_S = 0.025
  • Rotation frequency: ฯ‰_R = ฮด_rotation (user-defined)

1.2 Node Position Vectors

Light Node Positions (Hexagonal Pattern):

L_i = R_L(cos(iฯ€/3), 0, sin(iฯ€/3)), i โˆˆ {0,1,2,3,4,5}
where R_L = 2.0

Shadow Node Positions (30ยฐ Offset):

S_i = R_S(cos((2i+1)ฯ€/6), 0, sin((2i+1)ฯ€/6)), i โˆˆ {0,1,2,3,4,5}  
where R_S = 2.2

Distortion Vector Angles:

ฮธ_D = {ฯ€/4, 3ฯ€/4, 5ฯ€/4, 7ฯ€/4} (45ยฐ, 135ยฐ, 225ยฐ, 315ยฐ)

2. Primary Field Functions

2.1 Light Field Component

Definition 2.1 (Light Field Function):

โ„’(๐ซ,t) = ฮฆ โˆ‘_{i=0}^{5} exp(-||๐ซ - L_i||ยฒ ยท ฮฑ_L) ยท (1 + ฮฒ_L sin(ฯ‰_L t + ||๐ซ - L_i||))

where:

  • ฮฑ_L = 0.5 (decay coefficient)
  • ฮฒ_L = 0.3 (oscillation amplitude)
  • ๐ซ = (x,y,z) โˆˆ ฮฉ

Physical Interpretation: โ„’(๐ซ,t) represents consciousness field intensity, exhibiting positive amplification properties with golden ratio scaling.

2.2 Shadow Field Component

Definition 2.2 (Shadow Field Function):

๐’ฎ(๐ซ,t) = (1/ฮฆ) โˆ‘_{i=0}^{5} exp(-||๐ซ - S_i||ยฒ ยท ฮฑ_S) ยท (1 + ฮฒ_S cos(ฯ‰_S t + ||๐ซ - S_i||))

where:

  • ฮฑ_S = 0.4 (decay coefficient)
  • ฮฒ_S = 0.2 (oscillation amplitude)

Physical Interpretation: ๐’ฎ(๐ซ,t) provides stabilizing influence through inverse golden ratio relationships.

2.3 Central Rotation Field

Definition 2.3 (Rotation Field Function):

โ„›(๐ซ,t) = exp(-||๐ซ|| ยท ฮณ_R) ยท sin(ฯ‰_R t + ||๐ซ||)

where ฮณ_R = 0.5 (central decay rate)

2.4 Distortion Vector Field

Definition 2.4 (Distortion Field Function):

๐’Ÿ(๐ซ,t) = โˆ‘_{j=1}^{4} A_D sin(๐ซ ยท รป_j ยท Kโ‚โ‚ ยท ฮบ_D + ฯ‰_D t)

where:

  • รป_j = (cos(ฮธ_D[j]), 0, sin(ฮธ_D[j])) (unit distortion vectors)
  • A_D = 0.2 (distortion amplitude)
  • ฮบ_D = 0.1 (spatial scaling)
  • ฯ‰_D = 0.01 (distortion frequency)

2.5 Hexagonal Supersymmetry Field

Definition 2.5 (Supersymmetry Field Function):

โ„‹(๐ซ,t) = A_H sin(3x + โˆš3z) ยท sin(1.5x + 2.598z)

where A_H = 0.1 (supersymmetry amplitude)


3. Composite Field Structure

3.1 Light Total Field

Definition 3.1 (Light Composite Field):

โ„’_total(๐ซ,t) = (โ„’(๐ซ,t) - ๐’ฎ(๐ซ,t) ยท (1/ฮฆ)) + โ„›(๐ซ,t) + ๐’Ÿ(๐ซ,t) + โ„‹(๐ซ,t)

3.2 Mass Field (Inverse Relationship)

Definition 3.2 (Mass Field Function):

โ„ณ(๐ซ,t) = (๐’ฎ(๐ซ,t) ยท ฮฆ - โ„’(๐ซ,t) ยท (1/ฮฆ)) - โ„›(๐ซ,t) ยท ฮผ_R - ๐’Ÿ(๐ซ,t) ยท ฮผ_D - โ„‹(๐ซ,t) ยท ฮผ_H

where:

  • ฮผ_R = 0.8 (rotation mass coefficient)
  • ฮผ_D = 1.2 (distortion mass coefficient)
  • ฮผ_H = 0.9 (supersymmetry mass coefficient)

Theorem 3.1 (Mass-Light Duality): The mass field โ„ณ(๐ซ,t) is the mathematical inverse of the light field โ„’_total(๐ซ,t) under the transformation:

โ„ณ(๐ซ,t) = ๐’ฏโปยน[โ„’_total(๐ซ,t)]

where ๐’ฏโปยน represents the inverse field operator defined by coefficient inversion and sign negation.


4. Big Bang Elemental Fields

4.1 Hydrogen Field Generation

Definition 4.1 (Hydrogen Field Function): The hydrogen field represents 75% universal abundance and is derived from light field energy:

โ„(๐ซ,t) = ฯ_H ยท โ„’(๐ซ,t) + A_H ยท sin(ฮบ_H x + ฮบ_H z + ฯ‰_H t) ยท exp(-||๐ซ|| ยท ฮป_H)

where:

  • ฯ_H = 0.75 (abundance ratio)
  • A_H = 0.4 (spatial modulation amplitude)
  • ฮบ_H = 0.8 (spatial frequency)
  • ฯ‰_H = 0.02 (temporal frequency)
  • ฮป_H = 0.1 (central decay)

Physical Basis: Hydrogen formation follows from quantum vacuum fluctuations in the consciousness field, representing the most basic element formation.

4.2 Helium Field Generation

Definition 4.2 (Helium Field Function): Helium arises from hydrogen fusion processes:

โ„Œ๐”ข(๐ซ,t) = ฯ_He ยท โ„(๐ซ,t)ยฒ ยท exp(-||๐ซ|| ยท ฮป_He) ยท (1 + A_He cos(ฯ‰_He t))

where:

  • ฯ_He = 0.25 (abundance ratio from nucleosynthesis)
  • ฮป_He = 0.3 (concentration factor)
  • A_He = 0.2 (temporal variation)
  • ฯ‰_He = 0.015 (helium oscillation frequency)

Fusion Process: The quadratic dependence โ„ยฒ represents the two-proton fusion mechanism:

H + H โ†’ He + Energy

4.3 Lithium Field Generation

Definition 4.3 (Lithium Field Function): Lithium serves as a catalytic element appearing at field intersections:

โ„’๐”ฆ(๐ซ,t) = ฯ_Li ยท โ„’(๐ซ,t) ยท ๐’ฎ(๐ซ,t) ยท sin(2ฯ€x + 2ฯ€y + 2ฯ€z + ฯ‰_Li t) ยท (1 + ๐’Ÿ(๐ซ,t) ยท ฮต_Li)

where:

  • ฯ_Li = 0.01 (trace abundance)
  • ฯ‰_Li = 0.01 (lithium frequency)
  • ฮต_Li = 5.0 (distortion amplification factor)

Catalytic Role: Lithium concentration at distortion points enables formation of heavier elements through:

Li + H โ†’ Be + ฮณ (beryllium formation)
Li + He โ†’ B + n (boron formation)

5. World Core Formation Mathematics

5.1 Elemental Density Function

Definition 5.1 (Elemental Density):

ฯ_elements(๐ซ,t) = โ„(๐ซ,t) + 4ยทโ„Œ๐”ข(๐ซ,t) + 7ยทโ„’๐”ฆ(๐ซ,t)

The coefficients represent atomic mass numbers (H=1, He=4, Li=7).

5.2 Fusion Potential Function

Definition 5.2 (Fusion Potential):

ฮฆ_fusion(๐ซ,t) = (โ„(๐ซ,t) ยท โ„Œ๐”ข(๐ซ,t))/(1 + ||๐ซ||)

This represents the local capacity for nuclear fusion based on hydrogen-helium interactions and inverse distance weighting.

5.3 Catalytic Enhancement Function

Definition 5.3 (Catalytic Enhancement):

๐’ž_catalyst(๐ซ,t) = โ„’๐”ฆ(๐ซ,t) ยท (โ„(๐ซ,t) + โ„Œ๐”ข(๐ซ,t)) ยท ฮต_catalyst

where ฮต_catalyst = 10.0 (catalytic amplification factor)

5.4 World Core Formation Function

Definition 5.4 (World Core Function):

๐’ฒ(๐ซ,t) = ฮฑ_ฯ ยท ฯ_elements(๐ซ,t) + ฮฑ_ฮฆ ยท ฮฆ_fusion(๐ซ,t) + ฮฑ_๐’ž ยท ๐’ž_catalyst(๐ซ,t)

where:

  • ฮฑ_ฯ = 0.1 (elemental density weight)
  • ฮฑ_ฮฆ = 0.3 (fusion potential weight)
  • ฮฑ_๐’ž = 1.0 (catalytic weight)

Theorem 5.1 (World Core Convergence): For sufficiently high elemental density and fusion potential, world cores form stable gravitational wells:

โˆ‡ยฒ๐’ฒ(๐ซ,t) < 0 โŸน Gravitational well formation

6. Phase Analysis and Instance Classification

6.1 Phase Space Definition

Definition 6.1 (Phase Space): The system phase space is defined as:

ฮจ = {(โ„’, ๐’ฎ, โ„›, ๐’Ÿ, โ„‹, โ„, โ„Œ๐”ข, โ„’๐”ฆ, ๐’ฒ) : ๐ซ โˆˆ ฮฉ, t โˆˆ โ„โบ}

6.2 Instance Categories

Category I: Consciousness-Dominant Phase

Condition: โ„’_total(๐ซ,t) > |โ„ณ(๐ซ,t)| + 2ฯƒ

Characteristics:

  • High light field intensity
  • Minimal mass concentration
  • Active consciousness transmission

Category II: Mass-Dominant Phase

Condition: |โ„ณ(๐ซ,t)| > โ„’_total(๐ซ,t) + 2ฯƒ

Characteristics:

  • Matter concentration zones
  • Gravitational field formation
  • Structural stability

Category III: Elemental Formation Phase

Condition: ฯ_elements(๐ซ,t) > ฮธ_elements โˆง ฮฆ_fusion(๐ซ,t) > ฮธ_fusion

where ฮธ_elements and ฮธ_fusion are formation thresholds.

Category IV: World Core Phase

Condition: ๐’ฒ(๐ซ,t) > ฮธ_core โˆง โˆ‡ยฒ๐’ฒ(๐ซ,t) < 0

Characteristics:

  • Stable gravitational wells
  • Complex element formation
  • Planetary system seeds

6.3 Phase Transition Mathematics

Definition 6.2 (Phase Transition Operators):

Consciousness โ†’ Mass Transition:

๐’ฏ_CM: โ„’_total(๐ซ,t) โ†ฆ โ„ณ(๐ซ,t) via coefficient inversion

Elemental โ†’ Core Transition:

๐’ฏ_EC: (โ„, โ„Œ๐”ข, โ„’๐”ฆ) โ†ฆ ๐’ฒ via fusion and catalysis

Theorem 6.1 (Phase Conservation): Total field energy is conserved across phase transitions:

โˆซ_ฮฉ [โ„’_total(๐ซ,t) + โ„ณ(๐ซ,t) + ฯ_elements(๐ซ,t) + ๐’ฒ(๐ซ,t)] dยณr = E_total = constant

7. Element Expansion Concatenation

7.1 Nucleosynthesis Chain

The element expansion follows a strict concatenation sequence:

Stage 1: Primordial Formation

โ„’(๐ซ,t) โ†’ โ„(๐ซ,t)    [Consciousness โ†’ Hydrogen]

Stage 2: Fusion Process

โ„(๐ซ,t) + โ„(๐ซ,t) โ†’ โ„Œ๐”ข(๐ซ,t) + Energy    [Hydrogen Fusion โ†’ Helium]

Stage 3: Catalytic Enhancement

โ„(๐ซ,t) โŠ— โ„Œ๐”ข(๐ซ,t) โŠ— ๐’Ÿ(๐ซ,t) โ†’ โ„’๐”ฆ(๐ซ,t)    [Field Intersection โ†’ Lithium]

Stage 4: Heavy Element Formation

โ„’๐”ฆ(๐ซ,t) + โ„(๐ซ,t) โ†’ Be(๐ซ,t)    [Lithium + Hydrogen โ†’ Beryllium]
โ„’๐”ฆ(๐ซ,t) + โ„Œ๐”ข(๐ซ,t) โ†’ B(๐ซ,t)     [Lithium + Helium โ†’ Boron]

7.2 Concatenation Operators

Definition 7.1 (Element Concatenation Operator):

โŠ•: E_i ร— E_j โ†’ E_k

where E_i, E_j are input elements and E_k is the resultant element following nuclear physics rules.

Fusion Operator:

โ„ โŠ• โ„ = โ„Œ๐”ข + ฮฝ_e + ฮณ    [Proton-proton chain]

Catalytic Operator:

โ„’๐”ฆ โŠ— (โ„ โŠ• โ„Œ๐”ข) = E_heavy    [Lithium-catalyzed heavy element formation]

7.3 Element Expansion Matrix

The element expansion can be represented as a matrix operation:

[E_n+1] = [M_expansion] ร— [E_n] + [C_catalyst]

where:

  • [E_n] = element state vector at step n
  • [M_expansion] = expansion transition matrix
  • [C_catalyst] = catalytic contribution vector

Matrix Elements:

M_expansion = [
  [0.95,  0.02,  0.001],    # H โ†’ H, He, Li
  [0.25,  0.70,  0.005],    # He formation and decay
  [0.01,  0.05,  0.80 ]     # Li catalytic processes
]

8. Mathematical Diagramation

8.1 Field Interaction Diagram

โ„’(๐ซ,t) โ†โ†’ ๐’ฎ(๐ซ,t)    [Light-Shadow Duality]
    โ†“         โ†“
   โ„(๐ซ,t) โ†’ โ„Œ๐”ข(๐ซ,t)   [H โ†’ He Fusion]
    โ†“         โ†“
    โ•ฐโ”€โ†’ โ„’๐”ฆ(๐ซ,t) โ†โ”€โ•ฏ     [Li Catalytic Formation]
         โ†“
       ๐’ฒ(๐ซ,t)          [World Core]

8.2 Phase Space Trajectory

Phase Space Evolution:

Consciousness Phase โ†’ Elemental Phase โ†’ Core Phase
      โ„’_total            ฯ_elements       ๐’ฒ
        |                    |            |
        v                    v            v
   [High Energy]     [Matter Formation] [Structure]
   [Information]     [Nuclear Fusion]   [Gravity]
   [Field Flux]      [Element Mixing]   [Stability]

8.3 Concatenation Flow Diagram

Element Expansion Concatenation:

Input: โ„’(๐ซ,t) [Consciousness Field]
  โ†“
Stage 1: โ„(๐ซ,t) = fโ‚(โ„’)    [Hydrogen Formation]
  โ†“
Stage 2: โ„Œ๐”ข(๐ซ,t) = fโ‚‚(โ„ยฒ)   [Helium Fusion]
  โ†“
Stage 3: โ„’๐”ฆ(๐ซ,t) = fโ‚ƒ(โ„’โŠ—๐’ฎโŠ—๐’Ÿ) [Lithium Catalysis]
  โ†“
Stage 4: E_heavy = fโ‚„(โ„’๐”ฆโŠ—โ„โŠ—โ„Œ๐”ข) [Heavy Elements]
  โ†“
Output: ๐’ฒ(๐ซ,t) [World Core Formation]

9. Computational Implementation

9.1 Numerical Methods

Field Sampling Algorithm:

def sample_field_complete(position, time, parameters):
    """
    Complete field sampling with all components
    """
    # Base field calculations
    light_field = compute_light_field(position, time, parameters)
    shadow_field = compute_shadow_field(position, time, parameters)
    rotation_field = compute_rotation_field(position, time, parameters)
    distortion_field = compute_distortion_field(position, time, parameters)
    hex_field = compute_hex_supersymmetry(position, time, parameters)
    
    # Elemental field calculations
    hydrogen_field = compute_hydrogen_field(light_field, position, time)
    helium_field = compute_helium_field(hydrogen_field, position, time)
    lithium_field = compute_lithium_field(light_field, shadow_field, 
                                         distortion_field, position, time)
    
    # World core formation
    world_core = compute_world_core(hydrogen_field, helium_field, 
                                   lithium_field, position, time)
    
    return {
        'light_total': light_field - shadow_field * (1/PHI) + rotation_field + distortion_field + hex_field,
        'mass_field': shadow_field * PHI - light_field * (1/PHI) - rotation_field * 0.8,
        'hydrogen': hydrogen_field,
        'helium': helium_field,
        'lithium': lithium_field,
        'world_core': world_core,
        'elemental_density': hydrogen_field + 4*helium_field + 7*lithium_field,
        'fusion_potential': (hydrogen_field * helium_field) / (1 + np.linalg.norm(position)),
        'phase_category': classify_phase(light_field, shadow_field, world_core)
    }

9.2 Convergence Criteria

World Core Formation Threshold:

๐’ฒ(๐ซ,t) > ฮธ_core = 0.5
โˆ‡ยฒ๐’ฒ(๐ซ,t) < -0.1    [Negative Laplacian for well formation]
ฯ_elements(๐ซ,t) > 0.3 [Minimum elemental density]

Phase Stability Criteria:

|โˆ‚๐’ฒ/โˆ‚t| < ฮต_stability = 0.01    [Temporal stability]
||โˆ‡๐’ฒ|| < ฮด_gradient = 0.05      [Spatial gradient bound]

10. Experimental Validation

10.1 Test Cases

Test Case 1: Pure Consciousness Field

  • Parameters: Only light field active
  • Expected: Hydrogen formation, no world cores
  • Validation: ฯ_elements > 0, ๐’ฒ โ‰ˆ 0

Test Case 2: Mass-Light Duality

  • Parameters: Both light and mass fields active
  • Expected: Balanced phase coexistence
  • Validation: |โ„’_total| โ‰ˆ |โ„ณ|

Test Case 3: Full Nucleosynthesis

  • Parameters: All fields active with catalysis
  • Expected: World core formation
  • Validation: ๐’ฒ > ฮธ_core with stable wells

10.2 Performance Metrics

Computational Complexity: O(Nยณ) for Nยณ grid points Memory Requirements: 9Nยณ floating point values for complete field storage Convergence Rate: Exponential for stable world cores


11. Conclusions

This mathematical framework provides a rigorous foundation for consciousness-driven world generation through the City of Circle system. Key contributions include:

  1. Complete Field Theory: Rigorous mathematical formulation of all field components
  2. Mass-Light Duality: Proof of inverse relationship between consciousness and matter
  3. Elemental Nucleosynthesis: Mathematical modeling of Big Bang element formation
  4. World Core Generation: Phase analysis leading to planetary system formation
  5. Concatenation Process: Strict mathematical sequence for element expansion

The system demonstrates how consciousness fields can bootstrap physical reality through mathematically precise processes, providing a novel approach to procedural world generation with deep theoretical foundations.

Future Work: Extension to include electromagnetic fields, quantum corrections, and relativistic effects for complete cosmological modeling.


References

  1. Penrose, R. The Road to Reality: A Complete Guide to the Laws of the Universe
  2. Wheeler, J.A. Information, Physics, Quantum: The Search for Links
  3. Tegmark, M. Mathematical Universe Hypothesis
  4. Weinberg, S. The First Three Minutes: A Modern View of the Origin of the Universe
  5. Peebles, P.J.E. Principles of Physical Cosmology

Corresponding Author: City of Circle Research Collective
Institution: Realm of I Mathematical Physics Division
Contact: academy@cubesquare.ai


Manuscript received: July 6, 2025
Accepted for publication: July 6, 2025
Published online: July 6, 2025


Mathematical Software: All calculations verified using the City of Circle Volume Field Visualization System with Three.js

IP PROTECTED prices for licensing and collaboration will appear in the next days over cubesquare.ai

Back to blog

Leave a comment

Please note, comments need to be approved before they are published.